Pular para o conteúdo principal

Máscara Espectrográfica para câmera DSLR (2)

Fig. 1 Espectro solar obtido com a máscara (Fig. 7) depois do processo de calibração e processamento digital.O gráfico abaixo, traz a intensidade relativa das linhas, onde se pode observar a presença de inúmeros elementos químicos. Os números indicam o comprimento de onda em nanômetros.
Em um post anterior (1), mostramos como é possível montar um espectroscópio simples para demonstrações com base em redes de difração arranjadas a partir da superfície de CDs. Esse arranjo permite a observação de espectros de fontes luminosas. Aqui, complementamos aquele post com um outro arranjo para o registro fotográfico de espectros, ou um espectrógrafo. O texto "Máscara espectrográfica para registro digital de espectros de fontes brilhantes" detalha a montagem da máscara e pode ser encontrado no "Caderno Brasileiro de Ensino de Física" que foi publicado em agosto de 2017 (2). Aqui apresentamos algumas complementações junto com a divulgação desse artigo.

Para se ter uma ideia do potencial desse arranjo, a Fig. 1 é o espectro do sol obtido com a máscara proposta usando novamente uma rede improvisada a partir de um CD. Nele é possível ver as "linhas de Fraunhofer" típicas da luz solar e de sua interação com a atmosfera terrestre. Abaixo, ve-se um diagrama da intensidade relativa das linhas (o fundo foi subraido), mostrando as principais características visíveis dos elementos presentes na atmosfera solar e terrestre.  Neste post, apresentamos os desenhos para a montagem simples dessa "máscara", utilizando materiais comuns.

Desenho e montagem da máscara

A máscara consiste em um suporte feito em cartolina em que a "rede improvisada" de CD é colocada na frente da objetiva de uma câmera (no caso, usamos uma do tipo DSLR) e que permite a tomada de espectros de fontes brilhantes em "foco infinito". Essa máscara difere do arranjo anterior porque não há fenda e os espectros são formados a partir da difração da imagem do objeto distante na superfície do CD em modo "transmissão". Para se ter bons espectros, entretanto, é preciso que a fonte de luz sob análise seja observada a partir da reflexão em certos anteparos, conforme explicado abaixo.

Materiais

Para a construção da máscara é necessário:
  • 1 CD-R de onde se extrai um fragmento conforme indicado em (1). Será necessário também retirar a proteção metálica conforme explicado naquele post;
  • Tesoura;
  • Fita adesiva;
  • Cartolina escura;
  • Estilete;
  • Câmera fotográfica (do tipo DSLR ou que permita ajuste de tempo de exposição).
A máscara é formada por duas peças. Um "anel" de fixação, que permite a rede fixar-se na frente da objetiva da câmera e um bloqueio em "cotovelo" para permitir que apenas a luz proveniente de fonte distante seja difratada e entre na objetiva da câmera ao longo de seu eixo óptico.

Desenho do anel de fixação
Fig. 2 Diagrama para a montagem do anel de fixação. Note a posição da máscara. Os círculos devem ser vazados e adaptados conforme o diâmetro da câmera utilizada.As abas de fixação lateral tem 1 cm de largura.
Fig.2  traz o diagrama para montagem do anel de fixação. Esse desenho deve ser reproduzido em uma cartolina grossa, de preferência de cor preta, recortado e colado. O diâmetro interno, de 71 mm, é o da objetiva da câmera Nikon que utilizei e pode ser modificado para para outras objetivas.  Note que o anel menor tem 24 mm de diâmetro, mas pode ser maior. Esse é o tamanho também usado para a "replica" ou pedaço de CD-R que serve com rede de difração e que deve ser colado na parte interna, voltada para a objetiva da câmera.

Fig. 3 Aspecto final do anel de fixação montado
com a rede na posição.
O aspecto final do anel pode ser visto na Fig. 3. Como essa imagem mostra, a rede ficará paralela à objetiva da câmera (ver Fig. 5). Se apenas esse anel fosse utilizado, a câmera poderia registrar espectros e, ao mesmo tempo, uma imagem. Isso está mostrado na Fig. 4 para uma lâmpada de iluminação interna (de tubo). O espectro pode ser visto juntamente com a imagem de fundo.

Portanto, precisamos de um bloqueio, que obstrua a luz que atinge diretamente a objetiva e só mostre o espectro. Isso é conseguido com outro arranjo que chamei "bloqueio em cotovelo".

Desenho do bloqueio em cotovelo.

O desenho do bloqueio necessitou da determinação do ângulo de incidência que resulte no espectro de 1a ordem ser gerado paralelo ao eixo óptico da câmera. Esse ângulo foi medido em aproximadamente 50 graus em relação ao eixo da câmera. Esse ângulo pode ser diferente, conforme o tipo de CD utilizado (quanto maior o número de linhas por mm, tanto maior será esse ângulo). A Fig. 5 traz a representação esquemática do ângulo de incidência, juntamente com uma representação da objetiva da câmera e o desenho do cotovelo.

Fig. 4 Foto de um espectro de uma lâmpada fluorescente com o anel adaptado à câmera e com a rede de CD (sem o bloqueio).
Fig. 5 Diagrama esquemático do bloqueio em cotovelo a ser construído para a máscara (esquerda, ver complementação na Fig. 6). À direita pode-se ver o ângulo de incidência dos raios de entrada, a fim de que o espectro em primeira ordem seja paralelo ao eixo óptico da câmera.
O desenho da segunda peça pode ser visto na Fig. 6. Ela pode ser construída igualmente em cartolina e, idealmente, seu interior deve ser negro para aumentar o contraste dos espectros registrados. Observe que os polígonos A e A' são espelho um do outro, de forma que as medidas fornecidas para A são as mesmas de A'. As abas de colagem tem aproximadamente 1 cm de largura.
Fig. 6 Acima: diagrama esquemático para montagem do bloqueio em cotovelo. Abaixo: representação esquemática do bloqueio colado acima do anel de fixação. O diâmetro dos círculos é de aproximadamente 25 mm. 
Fig.  7 Imagem da montagem final da máscara na câmera.

O resultado final pode ser visto na Fig. 7. O alinhamento da máscara para uma tomada de espectro não é muito simples. É possível adaptar uma pequena luneta "buscadora" para facilitar o alinhamento.

Análise de espectros 

A Fig. 8 traz uma imagem do espectro do sol não processado, tal como registrado através da máscara. Para obter esse espectro, o reflexo do sol em um anteparo distante (vidro de um automóvel) foi utilizado. Os parâmetros usados para cada registro são mostrados em cada imagem. Note que, uma vez que a rede do CD espalha muito a luz, tempos de exposição da ordem de mais de 1 s devem ser usados em registros noturnos e apenas objetos brilhantes podem ser resolvidos.
Fig. 8 Espectro do Sol não processado obtido com a máscara. Nele é possível ver as famosas "linhas de Fraunhofer".
(Nikon D5100 F5.6, 1/3 s, ISO 100).
 A Fig. 9, traz um registro do espectro da lua e a Fig. 10 de lâmpadas de iluminação pública.
Fig. 9 Espectro da lua obtido com a máscara mostrando as linhas de Fraunhofer. (Nikon 5100, F4.5, 10s, ISO 320)
Fig. 10 Espectros de lâmpadas de iluminação pública obtidos com a máscara. Uma linha do espectro de segunda ordem aparece também registrado na imagem superior (lâmpada de vapor de mercúrio).Nikon 5100, F4.5,  10s, ISO 2500
Normalização e calibração do espectro da Fig. 8.

Uma vez que a câmera introduz distorções na representação de cor em relação ao espectro observado pelo olho, calibramos o espectro e extraímos a função de envoltória do espectro modificado. Para tanto, a imagem em JPG foi lida com um software de análise numérica e as três matrizes R, G e B foram extraídas separadamente. A função que retorna o comprimento de onda como função da posição do pixel (que chamamos de função calib) é  linear (porque a resposta de um a rede de difração é linear) e na forma:

calib(k)=L2+(k-D2)*(L1-L2)/(D1-D2)

Para a Fig. 8 temos

L1 = 589.7 nm
L2 = 486.1 nm

D1 = 1257
D2 = 470

e os valores de k vao de 0 a 4879. Com isso, dado a coordenada de um pixel, podemos saber seu valor correspondente em nanometros. Obviamente, conforme o aspecto da Fig. 8, é possível ver que se trata de um espectro de baixa resolução e a imagem traz, portanto, um registro superamostrado. Esse espectro pode ser visto no gráfico da Fig. 11 onde a intensidade em tons de cinza é mostrado no eixo y.
Fig. 11 Espectro solar "raw" (bruto) calibrado em nanômetros. A queda observada pouco antes de 600 nm é uma artifício do sensor da câmera.
Para eliminar a modulação de sensibilidade do sensor da câmera, seu valor médio foi extraído (na forma de uma função de calibração e normalizado entre 0<C1<1 e C2=1. Esse espectro foi multiplicado à matriz RGB, como função do comprimento de onda e dada por uma subrotina conhecida (3), fornecendo a imagem da Fig. 1. Portanto, o espectro da Fig. 1 contém exatamente a mesma quantidade de informação da Fig. 8 e representa um registro mais fiel ao olho, sem as distorções introduzidas pela máscara de cor do sensor fotográfico.

Referências


Comentários

Postagens mais visitadas deste blog

As Três Marias

Aspecto do Cinturão de Órion com as "Três Marias" conforme visto em um pequeno binóculo. Por Roberto Mura via Wikipedia. Ver também: A constelação de Órion (segundo gregos e egípcios) N ão é incomum a curiosidade em torno das famosas "Três Marias". Que agrupamento de estrelas é esse? Não podem ser encontradas com essa designação em nenhum mapa celeste, então elas se referem a quê? Na verdade, as constelações são designadas sob diversos nomes, mas apenas alguns são conhecidos como "oficiais". As "Três Marias" é um caso não oficial. Trata-se de, como é fácil de se pesquisar na internet, de um nome dado ao " Cinturão de Órion ", na constelação de mesmo nome. O "Dicionário Enciclopédico de Astronomia e Astronáutica" (1) de R. R. de Freitas Mourão, assim define esse nome: Três Marias . Asterismo na constelação de Órion, formado por três estrelas brilhantes, em linha reta, e igualmente espaçadas; Três Irmãs, Três Rei...

A questão dos nomes astronomia, astrofilia e o significado da astronomia amadora.

D. Pedro II (1825-1891) O dia 2 de Dezembro é conhecido nacionalmente como 'dia do astrônomo'. Esse é também o dia de nascimento de Pedro de Alcântara ou D. Pedro II que é reconhecido (merecidamente) como patrono da astronomia brasileira. Sempre nesse dia surge a dúvida se a comemoração deve incluir não somente os astrônomos profissionais mas os amadores também. Para tentar resolver a dúvida, devemos antes discutir um pouco sobre o significado próprio dos nomes usados para designar a ciência da astronomia e a prática da observação do céus "sem compromisso", como realizada por amadores. Por que as ciências que estudam fenômenos, ocorrências relacionados à vida se chama "biologia", e aquela que estuda fenômenos e ocorrências relacionados aos astros se chama "astronomia"? Além disso, não se fala em uma 'física amadora' ou uma 'biologia amadora'; não se ouve falar (em clubes) de 'físicos amadores' ou 'biólogos a...

A constelação de Órion (segundo gregos e egípcios)

Uma representação de Órion como visto no hemisfério sul, pelo sotware Stellarium . Alguns dizem que a constelaçao de Canis Major é de Órion, porque esse era caçador e o cão foi colocado junto a ele no céu. (Pseudo-Hyginus, Astronomica 2. 35, [1]) Órion na mitologia grega Segundo a mitologia grega, Órion (Ωριων), não se sabe se filho de Ireus ou do deus Poseidon com Euriale, natural da Beócia, era um caçador gigante muito bonito conhecido dos habitantes daquela região como Caldaon. Tendo peregrinado até a ilha de Quios, infestada de animais perigosos, sob influência da ninfa Hélice apaixonou-se por Mérope, filha do rei Enopion. Depois de caçar e matar todas as bestas de Quios, trouxe os espolios da caça aos pés da princesa como presente. Entretanto, o rei não queria o casamento. Depois de várias tentativas de aproximação da princesa, Órion conseguiu entrar no quarto de Mérope. Enopion pediu ajuda ao deus Dionísio que fez com que Órion caisse, sob influência dos sátiros...