Para se ter uma ideia do potencial desse arranjo, a Fig. 1 é o espectro do sol obtido com a máscara proposta usando novamente uma rede improvisada a partir de um CD. Nele é possível ver as "linhas de Fraunhofer" típicas da luz solar e de sua interação com a atmosfera terrestre. Abaixo, ve-se um diagrama da intensidade relativa das linhas (o fundo foi subraido), mostrando as principais características visíveis dos elementos presentes na atmosfera solar e terrestre. Neste post, apresentamos os desenhos para a montagem simples dessa "máscara", utilizando materiais comuns.
Desenho e montagem da máscara
A máscara consiste em um suporte feito em cartolina em que a "rede improvisada" de CD é colocada na frente da objetiva de uma câmera (no caso, usamos uma do tipo DSLR) e que permite a tomada de espectros de fontes brilhantes em "foco infinito". Essa máscara difere do arranjo anterior porque não há fenda e os espectros são formados a partir da difração da imagem do objeto distante na superfície do CD em modo "transmissão". Para se ter bons espectros, entretanto, é preciso que a fonte de luz sob análise seja observada a partir da reflexão em certos anteparos, conforme explicado abaixo.
Materiais
Para a construção da máscara é necessário:
- 1 CD-R de onde se extrai um fragmento conforme indicado em (1). Será necessário também retirar a proteção metálica conforme explicado naquele post;
- Tesoura;
- Fita adesiva;
- Cartolina escura;
- Estilete;
- Câmera fotográfica (do tipo DSLR ou que permita ajuste de tempo de exposição).
A máscara é formada por duas peças. Um "anel" de fixação, que permite a rede fixar-se na frente da objetiva da câmera e um bloqueio em "cotovelo" para permitir que apenas a luz proveniente de fonte distante seja difratada e entre na objetiva da câmera ao longo de seu eixo óptico.
Desenho do anel de fixação
O aspecto final do anel pode ser visto na Fig. 3. Como essa imagem mostra, a rede ficará paralela à objetiva da câmera (ver Fig. 5). Se apenas esse anel fosse utilizado, a câmera poderia registrar espectros e, ao mesmo tempo, uma imagem. Isso está mostrado na Fig. 4 para uma lâmpada de iluminação interna (de tubo). O espectro pode ser visto juntamente com a imagem de fundo.
Portanto, precisamos de um bloqueio, que obstrua a luz que atinge diretamente a objetiva e só mostre o espectro. Isso é conseguido com outro arranjo que chamei "bloqueio em cotovelo".
Desenho do bloqueio em cotovelo.
O desenho do bloqueio necessitou da determinação do ângulo de incidência que resulte no espectro de 1a ordem ser gerado paralelo ao eixo óptico da câmera. Esse ângulo foi medido em aproximadamente 50 graus em relação ao eixo da câmera. Esse ângulo pode ser diferente, conforme o tipo de CD utilizado (quanto maior o número de linhas por mm, tanto maior será esse ângulo). A Fig. 5 traz a representação esquemática do ângulo de incidência, juntamente com uma representação da objetiva da câmera e o desenho do cotovelo.
Fig. 3 Aspecto final do anel de fixação montado
com a rede na posição. |
Portanto, precisamos de um bloqueio, que obstrua a luz que atinge diretamente a objetiva e só mostre o espectro. Isso é conseguido com outro arranjo que chamei "bloqueio em cotovelo".
Desenho do bloqueio em cotovelo.
O desenho do bloqueio necessitou da determinação do ângulo de incidência que resulte no espectro de 1a ordem ser gerado paralelo ao eixo óptico da câmera. Esse ângulo foi medido em aproximadamente 50 graus em relação ao eixo da câmera. Esse ângulo pode ser diferente, conforme o tipo de CD utilizado (quanto maior o número de linhas por mm, tanto maior será esse ângulo). A Fig. 5 traz a representação esquemática do ângulo de incidência, juntamente com uma representação da objetiva da câmera e o desenho do cotovelo.
Fig. 4 Foto de um espectro de uma lâmpada fluorescente com o anel adaptado à câmera e com a rede de CD (sem o bloqueio). |
Fig. 7 Imagem da montagem final da máscara na câmera. |
O resultado final pode ser visto na Fig. 7. O alinhamento da máscara para uma tomada de espectro não é muito simples. É possível adaptar uma pequena luneta "buscadora" para facilitar o alinhamento.
Análise de espectros
A Fig. 8 traz uma imagem do espectro do sol não processado, tal como registrado através da máscara. Para obter esse espectro, o reflexo do sol em um anteparo distante (vidro de um automóvel) foi utilizado. Os parâmetros usados para cada registro são mostrados em cada imagem. Note que, uma vez que a rede do CD espalha muito a luz, tempos de exposição da ordem de mais de 1 s devem ser usados em registros noturnos e apenas objetos brilhantes podem ser resolvidos.
Fig. 8 Espectro do Sol não processado obtido com a máscara. Nele é possível ver as famosas "linhas de Fraunhofer".
(Nikon D5100 F5.6, 1/3 s, ISO 100). |
Fig. 9 Espectro da lua obtido com a máscara mostrando as linhas de Fraunhofer. (Nikon 5100, F4.5, 10s, ISO 320) |
Uma vez que a câmera introduz distorções na representação de cor em relação ao espectro observado pelo olho, calibramos o espectro e extraímos a função de envoltória do espectro modificado. Para tanto, a imagem em JPG foi lida com um software de análise numérica e as três matrizes R, G e B foram extraídas separadamente. A função que retorna o comprimento de onda como função da posição do pixel (que chamamos de função calib) é linear (porque a resposta de um a rede de difração é linear) e na forma:
calib(k)=L2+(k-D2)*(L1-L2)/(D1-D2)
Para a Fig. 8 temos
L1 = 589.7 nm
L2 = 486.1 nm
D1 = 1257
D2 = 470
e os valores de k vao de 0 a 4879. Com isso, dado a coordenada de um pixel, podemos saber seu valor correspondente em nanometros. Obviamente, conforme o aspecto da Fig. 8, é possível ver que se trata de um espectro de baixa resolução e a imagem traz, portanto, um registro superamostrado. Esse espectro pode ser visto no gráfico da Fig. 11 onde a intensidade em tons de cinza é mostrado no eixo y.
Fig. 11 Espectro solar "raw" (bruto) calibrado em nanômetros. A queda observada pouco antes de 600 nm é uma artifício do sensor da câmera. |
Referências
1 - Ver post: Monte um espectroscópio ou espectrógrafo (1)
2 - Xavier A. L. Máscara espectrográfica para registro digital de espectros de fontes brilhantes. Caderno Brasileiro de Ensino de Física, v. 34, n. 2, p. 621-635. Agosto 2017.
3 - http://www.efg2.com/Lab/ScienceAndEngineering/Spectra.htm (acesso em maio de 2016).
2 - Xavier A. L. Máscara espectrográfica para registro digital de espectros de fontes brilhantes. Caderno Brasileiro de Ensino de Física, v. 34, n. 2, p. 621-635. Agosto 2017.
3 - http://www.efg2.com/Lab/ScienceAndEngineering/Spectra.htm (acesso em maio de 2016).