07 fevereiro 2015

O que aconteceu aos canais de marte?

Fig. 1 Imagem comparativa de um mapa feito por Eugene Michel Antoniadi (1870-1944) e imagem do telescópio Hubble de marte. Essa imagem estabelece uma "comparação areográfica" entre as mesmas regiões de marte como vista por Antoniadi e registradas pelo Hubble modernamente. O telescópio Hubble é um dos mais avançados sistemas de observação criados, enquanto que Antoniadi foi um dos mais hábeis observadores do início do Século XX. Ver também Fig. 4.

"Além disso, a maioria dos canais que foram observados visualmente 
no Observatório de Lowell foram gravados repetidas vezes em 
um grande número de fotografias feitas durante os últimos quinze anos.

Finalmente, que as observações visuais extensivas feitas nesse 
observatório foram confirmadas in toto e corroboradas 
em detalhes pelas fotografias." (E. C. Slipher, ref. 17)

"Tenho a suspeita irritante de que existe ainda uma característica
essencial no problema dos canais marcianos 
que ainda permanece desconhecida." (C. Sagan, "Cosmos", 1980)
A maior parte da "geração do milênio" conhece, do planeta marte, imagens trazidas por sondas de exploração (1) que desceram naquele planeta e revelaram detalhes sem precedentes. Há porém uma história esquecida de exploração de marte, história feita de personagens que estudaram com sinceridade e fervor a superfície daquele planeta, não obstante as limitações de recursos técnicos e as distâncias de milhões de quilômetros envolvidas.

Hoje, a maioria dos textos que relatam as observações dos famosos canais marcianos restringem a estória a invenções criadas por dois observadores (1b): Giovani Schiaparelli (1835-1910) e Percival Lowell (1855-1916). Sobre Schiaparelli - o descobridor dos canais - a pouco confiável "Wikipedia" diz que ele "inadvertidamente popularizou a falsa ideia de canais artificiais em marte" (2). O "inadvertidamente" distorce o registro histórico do que realmente aconteceu. O fato é que a esses dois astrônomos é imputada a culpa pela propagação da existência dos canais (3). Na verdade, a época que se estendeu desde meados do século XIX até praticamente a década de 1960 foi marcada pela crença generalizada na academia na existência dessas construções, o que não é ressaltado nos textos modernos ou postagens da rede que pretendem descrever esse capítulo da história da Astronomia.

Fig. 2 O refrator Merz do Observatório de Brera (4).
Esse telescópio funciona até hoje e foi usado por
Schiaparelli em seus estudos areográficos.
Artigos científicos que relatam observação dos canais

Felizmente, é possível hoje em dia pesquisar artigos desse período e conhecer a opinião de outros observadores sobre a visualização de estruturas filiformes na superfície de marte. Por meio do refrator "Merz" (Fig. 2), Schiaparelli fez mapas detalhados da superfície de marte mostrando o que ele chamou "canali". Pretende-se explicar a estória dos canais como estruturas artificiais por um problema semântico entre a tradução da palavra "canali" em Italiano para "canals" em Inglês. O fato é que essas sutilizas semânticas não têm relação com o que outros observadores afirmaram ter visto em sucessivas oposições de marte no final do século XIX e início do século XX.

Nossa busca se deu no "SAO/NASA Astrophysics Data System" (6) em um período que vai de 1886 a 1954. É importante que o leitor esteja contextualizado no debate que ocorreu na época. Havia dois grupos de astrônomos: os que aceitavam a existência dos canais e os que afirmavam nunca ter observado as estruturas. Ainda que a balança da história tenha pendido  a favor desses últimos, é possível entender as falhas de observação a inúmeros fatores climáticos e de favorabilidade da oposição de marte. Do lado dos "crentes" haviam figuras ilustres como Antoniadi, por exemplo, sobre quem se afirma ter sido um crítico da existência dos canais, o que não é verdade (ver Fig. 1 e Fig. 4). Tudo isso aumenta o mistério em torno do tema, porque as teorias de ilusão - criadas para explicar o que Schiaparelli e Lowell viam com seus telescópios - não explicam porque esse fenômeno não se repete hoje em dia.

Fig. 3 Correspondência entre um mapa de Schiaparelli
e uma imagem moderna da região de Elysium e Syrtis
Major. 
Um artigo que chama a atenção é "Analysis of the Martian Canal Network" (5) de W. A. Webb (1955). Logo na introdução do artigo, esse autor declara:
Edison Pettit (*) confirmou a existência dos canais em 1939 e se convenceu de que eles eram tão numerosos quanto representados nos mapas de Schiaparelli de marte. Assim como Trumpler, ele também deixou de comparar seus desenhos com aqueles mapas de marte até que oposição passasse e seus desenhos fossem preparados para publicação.
A referência a Pettit citada é de um artigo publicado na "Associação de Astronomia do Pacífico" em 1947. Portanto, vê-se que até a década de 1950, havia pesquisadores que afirmavam a existência dos canais, o que mostra que essa estória não morreu com Schiaparelli e Lowell. O mais interessante desse relato é que, para reforçar a existência dos canais, era exigido que novos observadores não se influenciassem pelos mapas de Lowell e Schiaparelli. Acreditava-se que a simples consulta a tais mapas poderia induzir observadores a ver através do telescópio a existência dessas estruturas.

Na "Memoir of the British Astronomical Association" (7) , há na "seção de marte" uma relação de canais de marte e seus respectivos observadores. De lá extraímos a seguinte passagem:
O diretor, Mr. Cammell, nota que o número de canais observados foi 27. O Jamuna foi o único canal duplo visto distintamente. Gehon e o Ganges eram aparentemente duplos. Anubis, Astusapus e Astaboras eram visto como manchas sombreadas. Os canais nunca foram vistos muito distintos ou pretos, com exceção do Ganges que, em várias ocasiões, era sempre negro.
O Sr. Roberts fala em marcas sendo vistas distintamente quando a definição de imagem era boa.
O Sr. Antoniadi, depois de contar 42 canais, menciona um novo, visto em primeiro de Novembro, que não aparece nos mapas de Schiaparelli, mas que foi visto por observadores de Lick em 1892.
As observações mais precisas dos canais foram feitas pelo Sr. Stanley Williams. Seu relatório é reproduzido completamente.
Nesse artigo, vários nomes de observadores são citados, indicando os canais que eles observaram. Nomes como "Anubis", Astusapus", "Astaboras" e "Ganges" correspondiam à nomenclatura dada por Schiaparelli para os canais. O leitor deve atentar para o fato de os observadores nesse relatório confirmarem a existência dos canais "quando a definição da imagem era boa", o que está ligado à oscilações na imagem causada por turbulência atmosférica (8). Quem já observou qualquer planeta com grandes aumentos está acostumado ao fenômeno. Logo, as marcas filares eram vistas quando a turbulência se reduzia consideravelmente, o que ocorria apenas durante alguns minutos.

Fig. 4 Mapa de E. Antoniadi de marte mostrando os canais. Fonte (9).
Frequentemente, fala-se que os tais canais só poderiam na época ser vistos com telescópios de pequena abertura (abaixo de 10 polegadas). Sabe-se que a turbulência atmosférica influencia mais a formação de imagem com aberturas maiores. Isso é fácil de ser entendido considerando que, com aberturas maiores, a frente de onda que forma a imagem é maior (se comparada, por exemplo, à metade da abertura), de forma que a turbulência atmosférica é mais eficiente em deformar a imagem final com grande instrumentos. Entretanto, no "Report of the mars section" (1917-1918), "Observation and telescopic notes" (10), lê-se:
Escrevendo a respeito do telescópio refrator de 28 polegadas, Steavenson diz: "No dia 22 de abril, o seeing chegou a 5-6 (na escala do Prof. Pickering) por duas horas. Vi muito pouco além do que tenho visto com o equipamento de 10 polegadas, mas o que vi foi quase que instantâneo, ao invés de aparecer laboriosamente ao longo de uma hora de observação e, quando isso aconteceu, manteve-se a imagem serena por minutos certamente. De outra forma, o planeta apareceu muito como costumava ver em refratores de 8 e 10 polegadas. Os 'canais' eram  largos e difusos, embora bastante retos e suavizados como um todo. Não há dúvidas de que qualquer deles se apresentava meramente como cantos de marcações de meio tom. Tem-se dito que, com aberturas maiores, o planeta se apresenta cada vez mais natural, mas, nessa noite, penso que ele se parecia menos natural do que já tive chance de observar anteriormente. Esse efeito se deve largamente à retidão e o comprimento de Protonilus, Deuteronilus, Phison e Euphrates
Orontes e Typonius eram os únicos riscos que pareciam descontínuos."
Dessa forma, um observador confirmou a existência dos canais com um telescópio de 28 polegadas.

Fotografias que registram os canais

Céticos afirmam que nunca foram tiradas fotos registrando os canais e que isso prova que eram ilusórios. Inicialmente, ressaltamos que é possível explicar a raridade das imagens pela limitação tecnológicas da época quando não havia ainda os dispositivos CCD ou câmeras digitais e os registros eram baseados em filmes químicos. Entretanto, segundo Webb (5):
R. J. Trumpler, na oposição de 1924 e 1926 fez, muitas centenas de fotografias de marte mostrando canais e, por um sistema de combinação de negativos, preparou mapas de marte que se parecem bastante com aqueles de Lowell e Schiaparelli. Embora Trumpler negue conhecimento prévio desses mapas, opositores da teoria dos canais dizem que ele foi influenciado por elas na preparação de seus próprios mapas.
A referência aqui é Robert J. Trumpler (1886-1956), astrônomo suíço, que não teve a fama de Schiaparelli ou Lowell. A referência que indica as fotos não pôde ser encontrada. Sobre tais fotos, escreveu Pettit (11):
Muitas tentativas foram feitas de fotografar essas difíceis marcas, os canais de marte. Embora imagens interessantes tenham sido obtidas, nenhuma fotografia revelou os detalhes finos descritos por observadores visuais. Com aumento de potência óptica e melhoria nas técnicas fotográficas agora disponíveis, pode parecer estranho que fotos melhores não tenham sido obtidas. A explicação comumente aceita é que grandes abertura não são adaptáveis ao problema, porque as condições de visibilidade nunca são suficientemente boas.
Esse autor reafirma que os canais são visíveis como "detalhes finos" na superfície de marte e que sempre escapam à fotografia por causa das condições de observação que pioram com grandes aberturas. Naturalmente, há vários trabalhos de Percival Lowell sobre fotografias de canais (12,13, 14) que foram desprezados. Mas, há também artigos de outros autores (15,16,17).
Fig. 5. Mapa de marte preparado na oposição de 1954 que, segundo (16) utilizou fotografias do planeta feita pelo telescópio refletor de M. Wilson de 100 polegadas (2,5 metros).
De particular interesse é o relatório de Pettit (16). Nele há um mapa feito na oposição de 1954 que mostra claramente os canais. No artigo pode-se ler (ver seção "Marcas identificadas como canais"):
As únicas fotografias em que buscamos canais foram as imagens em amarelo tomadas em 1, 2 e 3 de Julho durante boas condições de visibilidade, quando o planeta estava a 39800000 milhas de distância. Deve-se enfatizar que essas observações cobriram somente a região de 170 a 310 graus. Marcações visíveis em exposições foram identificadas com os canais Cerberus I, Hades, Eunostos I, Hyblaeus, Amenthes, Thoth-Nepethes e Gyndes-Alcyonus. Em nossas fotografias, essas marcações parecem como raias irregulares ou bandas. Em desenhos feitos em 1939 e 1941, observadores gravaram essas raias como duas linhas paralelas curvadas. Nossas fotografias as mostram como uma marca em forma de nuvem alongada. As únicas marcas que se pareciam como canais como são descritas usualmente foram Eunostos I e Hyblaeus que se assemelham a linhas grossas.  
Finalmente, em um artigo recente G. Mort (18) publicou algumas fotos e registros de marte feitos com o grande refrator Clark de 24 polegadas feitas em Mars Hill. Nelas se observam os detalhes finos na forma de canais como pode ser visto nas Figs. (6a) e (6b). A Fig. 6b mostra que a superfície de marte se parecia como uma rede de "veias" ou "rios" que percorriam o planeta. Portanto, cai por terra as teorias de que Lowell e Schiaparelli inventaram os canais ou foram iludidos por suas crenças em vida extraterrestre naquele planeta.

Fig. 6a. Direita: Registro fotográfico feito com refrator de 24 polegadas (ver ref. 18). Esquerda: imagem interpretada através de um desenho.
Fig. 6b. Registro fotográfico de marte feito com refrator de 24 polegadas (ver ref. 18) de Mars Hill (Arizona). Nessa imagem aparecem as estruturas filamentares que podem ser tomadas como canais.
Conclusões

Obviamente, a questão sobre a existência de canais artificiais em marte é hoje considerada resolvida. O que analisamos aqui como não resolvidas são as explicações e causas para o avistamento e registro de estruturas parecidas com isso por inúmeros observadores habilidosos como Antoniadi, Beer e Mädler e outros, para não citar Schiaparelli e Lowell.

Quando as primeiras imagens dos sistemas Mariner chegaram em 1966 revelando marte como um mundo parecido com a lua e desprovido de canais, a decepção foi geral. Então, surgiram teorias de que os canais eram avistamentos de cadeias de crateras sucessivas e que antigos observadores se deixaram levar por teorias de vida extraterrestre. Porém são inaceitáveis as descrições de que a estória dos canais foi uma criação das mentes de Schiaparelli e Lowell, ou que legiões de observadores se deixaram ingenuamente a acreditar e ver na superfície de marte essas estruturas. Ainda difícil de se acreditar hoje em dia é o efeito de influenciação psicológica por mapas areográficos em que essas estruturas aparecem. Na época acreditava-se que isso era possível e, provavelmente, ainda há pessoas que pensam assim.

Essas teorias remanescentes, que descrevem os canais como "ilusões de óptica", são adicionalmente inaceitáveis por uma razão muito simples: de dois em dois anos, marte entra em oposição e se torna um objeto altamente favorável à observação. Porém, desde os primeiros vôos aquele planeta, nunca mais as dezenas de canais foram observadas. Se a teoria da ilusão de óptica fosse ainda válida, poderíamos contemplar essas estruturas ainda hoje.

Em um artigo mais crível, G. Mort (18) propõe a teoria de que os canais existiram  de fato - como estruturas filamentares - mas foram cobertos pela atividade atmosférica daquele planeta desde então. Segundo esse autor:
(Essa teoria) mostra que aquelas observações feitas nos séculos XIX e XX se baseavam em algum tipo de realidade. Havia de fato marcas proeminentes na superfície marciana que foram legitimamente observadas com telescópios na Terra. Isso demonstra que o albedo da superfície marciana passou por mudanças dramáticas em um curto período de tempo areográfico. Talvez isso exija que se repense o processo evolutivo da climatologia marciana. Se não houver nada além disso, ela contribui para uma nova apreciação do trabalho de Schiaparelli de 1877 e as intrigantes observações que o sucederam. 
Segundo C. Sagan, seria impossível que tais características tivessem desaparecido pouco antes das primeiras Mariners chegarem ao planeta. A teoria de Mort é interessante, mas assume que essas revoluções de superfície aparentemente sepultaram para sempre os canais que foram vistos e correlacionados entre observadores em inúmeras oposições do planeta antes de 1964-1966, e que hoje não se avistam mais. Portanto, somos partidários da opinião de Sagan de que ainda existe uma "suspeita irritante" sobre toda essa estória dos canais.

Para quem tiver interesse em outras suspeitas irritantes relacionadas ao planeta vermelho, recomendo o  artigo sobre os "flares" marcianos por T. Dobbins e W. Sheehan (19) da ALPO

Para um mapa moderno (oposição de 2005) de marte por observadores na Terra, ver:

Referências e notas

(1) Para um relato da história de exploração de marte feita pela NASA ver: http://history.nasa.gov/marschro.htm

(1b) A. Manara e A. Wolter (2011). "Mars in the Schiaparelli - Lowell letters". Men. S. A. It. vol 82, 276. Ver: http://adsabs.harvard.edu/abs/2011MmSAI..82..276M

(2) http://pt.wikipedia.org/wiki/Giovanni_Schiaparelli (texto de Fevereiro de 2015).

(3)  Ver, por exemplo R. Milner (2011), "Tracing the Canals of Mars: An Astronomer's Obsession", em que o autor diz "ao menos um astrônomo proeminente estava convencido de que marte não só suportava vida, mas era morada de uma avançada civilização".

(5) Ver: http://adsabs.harvard.edu/full/1955PASP...67..283W. "Publications of the Astronomical Society of the Pacific", Vol. 67, No. 398, p.283

(7) "Report of the Mars Section. A List of Canals and Observers. Memoirs of the British Astronomical Association", vol. 4, pp.117-119 (1896). Ver: http://adsabs.harvard.edu/abs/1896MmBAA...4R.117.



(10) Ver: http://adsabs.harvard.edu/abs/1926MmBAA..26....1... Section for the Observation of Mars. 1917-1918. Introduction. Memoirs of the British Astronomical Association, vol. 26, pp.1-8 (1926)

(11) Ver: http://adsabs.harvard.edu/abs/1947PASP...59....5PPublications of the Astronomical Society of the Pacific, Vol. 59, No. 346, p.5 (1947)

(12) P. Lowell (1905) "The Canals of Mars - Photographed". Astronomische Nachrichten, volume 169, p.47. Ver: http://adsabs.harvard.edu/abs/1905AN....169...47L

(13) P. Lowell (1905) "The Canals of Mars-Photographed". Popular Astronomy, vol. 13, pp.479-484. Ver: http://articles.adsabs.harvard.edu/full/1905PA.....13..479L

(14) P. Lowell (1906) "First Photographs of the Canals of Mars". Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Volume 77, Issue 515, pp. 132-135

(15) E. Pettit (1950). "Photographing Mars". Astronomical Journal, Vol. 55, p. 77. Ver: http://articles.adsabs.harvard.edu/full/1950AJ.....55R..77P

(16) E. Pettit e R. S. Richardson (1954) "Observations of Mars Made at Mount Wilson in 1954". 
Publications of the Astronomical Society of the Pacific, Vol. 67, No. 395, p.62. Ver: http://articles.adsabs.harvard.edu//full/1955PASP...67...62P/0000067.000.html?high=54d5f44f5d10654

(17) E. C. Slipher (1921). "Photographing the Planets with Especial Reference to Mars". Publications of the Astronomical Society of the Pacific, Vol. 33, No. 193, p.127. Ver: http://articles.adsabs.harvard.edu//full/1921PASP...33..127S/0000127.000.html?high=54d5f44f5d10654

(18) G. Mort. Mars: The Canal Cover-up. Martian revelations. http://www.gregmort.com/Bibliography_files/Mars_Canal_Cover-up_Final_Draft-5.pdf

(19) T. Dobbins e W. Sheehan. "Solving the Martian Flares Mystery".  http://www.alpo-astronomy.org/mars/articles/MartianFlaresALPO.pdf

20 janeiro 2015

Imagens de estrelas em telescópios

Fig. 1 Imagem simulada de uma estrela em um telescópio refrator, o chamado "disco de Airy". Não é possível ver nenhum detalhe da estrela, mas apenas um disco com vários anéis em volta. Por que isso acontece?
Telescópios são na verdade filtros de luz. O objetivo principal em termos de funcionalidade de um sistema telescópico é aumentar a quantidade de luz (e não o tamanho da imagem) proveniente de um objeto. Como tudo na Natureza, isso tem um custo. Esse custo vem em forma de uma limitação na capacidade de distinguir objetos localizados muito próximos, ou seja, separar a imagem de duas “fontes ideais” localizadas arbitrariamente próximas uma da outra.

O que acontece quando a luz proveniente de um objeto distante (em particular uma estrela) atinge o telescópio ? As frentes de onda que contêm informação sobre a estrela são distorcidas pelo sistema óptico. No caso dos telescópios refletores, as frentes de onda são obrigadas a convergir para um ponto, o ponto focal.
Fig. 2 A imagem de uma estrela é formada pela reflexão e “difração” das frentes de onda na superfície de um espelho refletor (no caso de telescópios refletores).
Acontece que o espelho tem uma dimensão finita. Nas bordas do espelho acontece um fenômeno que revela a natureza ondulatória da luz: as frentes de onda originais são “difratadas” (Fig. 2). Essa difração não permite que a imagem final reproduza com todos os detalhes a imagem original da estrela. Por causa disso, não é possível, por exemplo, ver detalhes na superfície da estrela. É possível ver que, se as frentes de onda originais forem distorcidas – como no caso dentro da atmosfera terrestre – a imagem é severamente piorada. Quaisquer outros meios ópticos que se interponham entre o espelho e a estrela distante causam distorção na imagem formada no ponto focal do espelho. Com telescópios de lentes – no caso dos refratores – também ocorre difração da luz nos cantos da lente.

Para descrever com precisão o processo de passagem da frente de onda pelo espelho do telescópio, precisamos de ter em mãos uma teoria que trate esse sistema. Em óptica é possível separar dois aspectos do fenômeno: um ligado a descrição da trajetória dos raios de luz desde a estrela, reflexão no espelho e convergência ao ponto focal; e outro ligado aos efeitos de difração. Isso colocado, as considerações aqui feitas se aplicam a qualquer sistema óptico com “abertura” circular e com diversos tipos de arranjos de obstrução. Para calcular a imagem por eles formada, é suficiente descrever a parte ondulatória (difrativa) da formação de imagem. As imagens reproduzidas de estrelas correspondem ao que se pode ver por sistemas bem colimados próximos ao "eixo óptico" do sistema. 
Fig. 3 Suporte de espelho secundário em "aranha" de um telescópio refletor Newtoniano (do autor). A projeção da sombra do suporte modifica a imagem de uma estrela, o que é conhecido como "padrão de difração" (característico do formato do suporte.
Telescópios de espelho fazem uso, em geral, de suportes especiais para os espelhos secundários ou apresentam furações na superfície do espelho principal. Como é a imagem de uma estrela formada por diferentes tipos de arranjo de suporte? Neste post vamos descrever isso através de simulações numéricas. Isso porque é possível calcular a imagem de uma estrela, usando a teoria da óptica física. 

Em primeiro lugar, vemos na Fig. 1 uma imagem produzida por um sistema do tipo "refrator", sem obstáculos ou perfurações. Para se observar uma imagem como essa é necessário que a atmosfera esteja límpida, com baixos gradientes de temperatura – como no caso da condição atmosfera após uma forte chuva. A Fig. 1 mostra o chamado disco de “Airy”, que em óptica física é a própria “função de ponto espalhado” (point spread function) do instrumento. Com essa função é possível – também por meio de computadores – simular a imagem de qualquer objeto extenso (como no caso de planetas). Ela é caracterizada por um disco central, circulado por uma série de “anéis”, conhecidos como “anéis de difração”.

Mas, essa imagem não aparece em outros tipos de instrumentos. Por exemplo, suponhamos um telescópio Newtoniano com suporte de secundário "simples", como mostrado na Fig. 4(a). Essa é a imagem que alguém vê ao olhar através do suporte da ocular de um telescópio Newtoniano com a ocular removida. Nesse caso, a imagem formada de uma estrela será de um ponto ladeado por dois "riscos" que, se ampliados, revelam a formação de uma figura de difração com vários anéis e "espículas" de difração. Isso está mostrado na Fig. 4(c).

Fig. 4 Perfil de sombra projetada no espelho secundário de um telescópio Newtoniano (a). Imagem de uma estrela (b). Imagem ampliada de contraste aumentado do padrão de difração (c).
Se o suporte form em "aranha", ou seja, um conjunto de três hastes distantes 120 graus que tem o secundário no centro (Fig. 5(a)), o perfil será como mostra a Fig.5(b). Essa imagem é a da clássica estrela de seis pontas. Observe que como cada haste produz duas espículas separadas por 180 graus, três hastes produzirão seis espículas separadas por 60 graus cada uma. Pode-se apreciar com mais detalhes as espículas de difração ampliadas como vistas pelo sistema da Fig. 5(a) na Fig. 6(a). Essa é uma imagem com intensidade aumentada de uma estrela como vista por um telescópio refletor do tipo Newtoniano contendo um suporte em aranha.
Fig. 5 (a) Perfil de suporte secundário em aranha. (b) Imagem estelar formada.
Fig. 6 (a) Imagem bastante ampliada e com contraste das espículas de difração aumentada de uma estrela como vista por um telescópio com suporte de secundário "em aranha". (b) Perfil de intensidade da estrela (gráfico 3D ou topográfico do perfil correspondente a (a)).
Efeito da difração: estrelas duplas.

Nas imagens simuladas acima, não levamos em consideração o efeito da turbulência atmosférica. Isso é bastante característico, porém, basta tentar observar uma estrela por um telescópio em uma noite qualquer; dificilmente a atmosfera estará calma o suficiente para resultar nas imagens como mostradas anteriormente. Em noites límpidas, haverá instantes de estabilidade em que se poderá contemplar imagens muito semelhantes às aqui apresentadas.

O maior efeito  da difração ocorre na observação de estrelas duplas. Em geral, estrelas duplas ou binárias são estrelas que parecem muito próximas, tão próximas que não é possível separar cada elemento a vista desarmada. Usando telescópios de determinadas dimensões e grandes aumentos isso é possível, dependendo da distância "aparente" entre cada estrela e da diferença de brilho entre elas. A Fig. 7 mostra uma simulação de uma "dupla cerrada" ou binária próxima ao chamado "limite de Dawes". Esse limite estabelece a distância angular aparente a partir da qual duas estrelas começam a ser separadas. Cada figura mostra versões de imagem em diferentes tipos de telescópio, como explica a legenda. O que acontece se a companheira for menos brilhante que a outra? Isso está mostrado na Fig. 8. Nessa simulação, uma estrela duas magnitudes abaixo de sua companheira principal (que tem maior brilho) é mostrada através de dois telescópios diferentes conforme explica a figura.

Fig. 7. Simulação de uma estrela binária com componentes de mesmo brilho próximas no chamado "limite de Dawes". Esse limite corresponde ao "poder de resolução" do equipamento. Em (a) vemos um par desse tipo como visto por um telescópio refrator. Em (b) vemos o mesmo  par através de um telescópio refletor com suporte em "aranha" (Fig. 3).
Fig. 8 Mesmo caso que Fig. 8, porém a estrela secundária está duas magnitudes abaixo da primária. (a) Imagem por um refrator. (b) Imagem por um refletor com suporte em "aranha".
Devemos deixar claro que os perfis reproduzidos só são realmente observados em instrumentos muito bem colimados (com óptica boa) e em condições de observação excepcionais. Isso muitas vezes é difícil de se conseguir na prática. As imagens simuladas mostram o perfil de intensidade para uma componente de frequência da luz apenas. Entretanto, variações no comprimento de onda da luz provocam uma mudança muito pequena na posição dos principais máximos e mínimos de difração, de forma que as simulações são uma excelente aproximação para o que se pode ver.

Nesse post apresentamos uma sequência de simulações numéricas de imagens de estrelas em telescópios de diferentes tipos para condições de atmosfera com turbulência nula. A abertura do telescópio funciona como um grande filtro de Fourier sendo que a imagem de um objeto pontual (como no caso de uma estrela) é a própria transformada da abertura (a conhecida função de Airy). A formação da imagem de objetos extensos pode ser pensada como a interferência de multiplas fontes que formam o objeto (nas quais ele pode ser dividido). Essa fonte fundamental é conhecida em inglês
com “point spread function” e é fundamental na análise e processamento de imagens astronômicas. As simulação aqui apresentadas foram feitas usando uma planilha .mcd do software MathCAD (versão 2000)

Referências



03 janeiro 2015

Cometas em 2015: C/2014 Q2 (Lovejoy)

Cometa Lovejoy (C/2014 Q2) em foto de Alexandra Albani (desde Banglore, Índia)
O ano de 2015 começa com um novo visitante visível à vista desarmada e durante a tarde. Trata-se do cometa C/2014 Q2, chamado "Lovejoy", descoberto em Agosto de 2014 por Terry Lovejoy. É um cometa de logo período (estima-se como 11 mil anos) e que está em boas condições de observação.

Atualização: Foto tirada em 17/1/2014  desde Campinas/SP. Nikon D40. ISO 1600, 30 segundos. Um rastro de satélite também foi capturado atravessando as Híades. (clique na foto para ampliar).

Um mapa para encontrar esse cometa nas primeiras semanas de Janeiro de 2015 pode ser visto abaixo. Pela sua posição no céu, é possível inferir que o C/2014 Q2 pode ser visto ao entardecer facilmente, estando próximo à constelação de Órion. 

Mapa: cortesia de cometchasing.skyhound.com
O objeto apresenta magnitude 4,9 no começo de Janeiro caindo cerca de 0,7 pontos em magnitude até o final do mês. Observadores do hemisfério sul devem correr porque o período de máximo brilho será seguido do movimento do cometa em direção ao hemisfério boreal, o que dificultará sua observação.

Como Janeiro é um mês chuvoso para a parte austral do Brasil, o planejamento de uma observação desse cometa pode ser bastante prejudicado. A Lua provavelmente irá influenciar pouco a observação, já que o C/2014 Q2 tem alto brilho.

Este cometa estará visível em binóculos por várias semanas, porém as condições serão mais propícias para observadores do hemisfério norte. Um mapa para até o final de Janeiro de 2015 pode ser baixado aqui.

Referência