01 novembro 2017

Tentei ver a chuva de meteoros e não consegui: por quê ?

Fig. 01. Imagem da chuva de meteoros gemínidas de 2009 (fonte: NASA). A falta de informação sobre as condições de observação das chuvas de meteoros muitas vezes causa frustração quando se tenta observar esse fenômeno sem a devida atenção a tais condições.
Este post tenta esclarecer algumas dúvidas que internautas tem em relação à observação de chuva de meteoros. Sempre que tiver dúvidas, não deixe de consultá-lo.

A grande mídia frequentemente anuncia "chuvas de meteoros" e convida pessoas para a observação, sem maiores detalhes, além de indicações precárias da região do céu onde a chuva seria observada.  A última notícia dessas que vi na TV era sobre a chuva "Orionidas", em que uma grande rede de televisão anunciou como visível em "todo o Brasil". 

Entretanto, é preciso estar atento para as inúmeras condições necessárias para que seja possível observar uma chuva desse tipo. Frequentemente, pode-se ler na rede as frustrações das pessoas que não conseguiram ver nada. Mas qual a aparência de um chuva de meteoros?

O nome "chuva de meteoros" é enganoso e pode levar a crer que se trata de um evento espetacular, mas não é: a imensa maioria das tais "chuvas" aparecem com a observação de um rastro a cada hora. Imagine chamar de "chuva" a precipitação de uma gota de água por hora...São raríssimos os eventos de mais de um meteoro por hora e a imagem da Fig. 1 foi obtida com o obturador da câmera aberto, de forma que vários rastros foram registrados ao longo de horas de exposição.

Dentre as principais condições para uma boa observação das chuvas destacamos:
Fig. 2. Geometria de uma chuva de meteoros.
  1. Não pode "haver lua" no céu, o que significa que, preferencialmente, o evento não deve estar entre o quarto crescente e o minguante subsequente, mas, principalmente, a proximidade da lua cheia. A presença da lua cheia é um sério empecilho à observação e irá impedir a visualização dos rastros;
  2. Altas taxas de "precipitação". A intensidade das chuva é medida pelo seu "rate" em número de meteoros por hora. É óbvio que, quanto maior esse número, maior a chance de se observar um evento;
  3. A posição da radiante. A radiante é um ponto fictício no céu de onde os meteoros "surgem". Na verdade, é um efeito geométrico e depende do arranjo entre as órbitas dos detritos e da Terra. O problema é que, se a radiante estiver muito baixa no horizonte, as chances de observação se reduzem por um efeito muito simples de entender (Fig. 2), algo como a diferença de expectativa de receber um pingo de chuva no para-brisa de um carro e sua traseira quando o carro se move para frente. Radiantes muito baixas (o que ocorre se sua posição for muito boreal em relação ao hemisfério sul e vice-versa) simplesmente não produziram efeito algum. A posição ideal é a da radiante "diretamente acima" da cabeça do observador;
  4.  Ausência de iluminação artificial, o que torna difícil a observação das chuvas de meteoro (ideais) nas grandes cidades. Se as condições 1-3 acima forem satisfeitas, a observação de meteoros em grandes cidades está limitada apenas aos eventos mais brilhantes, conforme inúmeros registros em vídeo têm mostrado recentemente (2).
  5. Acrescentamos ainda a necessidade de tempo limpo, sem nuvens, pois meteoros tornam-se visíveis muito além da camada de nuvens. Essa exigência é comum para qualquer evento no céu o que, no caso do Brasil (e América Latina), implica que são escassas as chances de boas observações nos meses chuvosos. Portanto, chuvas de meteoros que coincidam com a época seca (outono, inverno) provavelmente satisfarão essa necessidade. Isso não significa que é impossível observar chuvas nos meses chuvosos, mas será mais difícil nessa época.
A geometria da chuva

Das condições acima, a posição da radiante (3) é a mais importante. Para entender isso é preciso considerar a Fig. 2. A radiante é um ponto do céu de onde os meteoros associados a uma chuva provêm. Uma "corrente de chuva" é uma região do espaço caracterizada pelos meteoros, as vezes associados a um determinado cometa. A velocidade relativa entre a corrente e a Terra determina a direção do céu e a velocidade com que eles são "interceptados" pela Terra. Na Fig. 2 ilustramos uma chuva que tem radiante no hemisfério norte (como acontece com a maioria das chuvas). Um observador A no hemisfério norte terá a radiante quase que acima de sua cabeça e os meteoros encontrarão uma camada de atmosfera menor do que aquela que existe par o observador B no hemisfério sul. Isso significa também que os rastros deixados pela chuva para o observador A serão maiores do que para o observador B, em média, o que implica em um brilho inferior, desfavorecendo a observação. Além disso, a imagem da Fig. 3 mostra que há dois pontos de interceptação da corrente, de forma que existem duas datas no ano para a grande maioria das chuvas, com condições diferentes de encontro. 

Fig. 3 Imagem de uma representação da corrente associada ao cometa Halley das Oriônidas, conforme simulação em https://www.meteorshowers.org/ . A órbita da Terra é representada pelo traço em azul. 
Essa é a geometria para observação da chuva que foi explicado na condição (3). Ela é suficiente para nos convencer sobre a necessidade de se cumprir as condições acima para uma boa observação de uma chuva de meteoros - principalmente se a radiante está no hemisfério norte, o que ocorre com as chuvas mais famosas: Oriônidas, Leônidas e Perseidas. Talvez a chuva das "Eta Aquáridas" seja a de melhor observação para o hemisfério sul. Ela acontece entre 20 de abril e 20 de maio, com pico entre 5-6 de maio. Sua radiante está localizada aproximadamente sobre o equador celeste, o que traz condições equivalentes para observadores em ambos os hemisférios. Outra consequência do que estudamos aqui é que, para o Brasil, certamente observadores nas regiões norte são beneficiados. Também não é difícil ver que as correntes de cada chuva tem quantidades diferentes de meteoros - o que depende da idade do cometa associado e outras condições perturbativas. Dessa forma, a taxa horária é consequência de um soma de fatores e variará bastante não só entre cada chuva, mas também, para uma dada chuva ao longo de vários anos. 

Referências

Mais informações sobre a geometria das "correntes de chuva" neste link: https://www.meteorshowers.org/

01 outubro 2017

Conjunção Vênus-Júpiter de 13 de novembro de 2017

Aspecto de uma conjunção de vênus e júpiter em 2014 como visto desde Townsfille, Australia.  

Trata-se de aviso de conjunção entre os planetas Vênus e Júpiter, a ocorrer na primeiras horas do dia 13 de novembro de 2017, muito próximo do poente. 

Com uma separação mínima de 17', essa conjunção a 13 graus do sol. A conjunção poderá ser acompanhada durante o dia, quando então será fácil observar dois planetas com um telescópio.

12 agosto 2017

Máscara Espectrográfica para câmera DSLR (2)

Fig. 1 Espectro solar obtido com a máscara (Fig. 7) depois do processo de calibração e processamento digital.O gráfico abaixo, traz a intensidade relativa das linhas, onde se pode observar a presença de inúmeros elementos químicos. Os números indicam o comprimento de onda em nanômetros.
Em um post anterior (1), mostramos como é possível montar um espectroscópio simples para demonstrações com base em redes de difração arranjadas a partir da superfície de CDs. Esse arranjo permite a observação de espectros de fontes luminosas. Aqui, complementamos aquele post com um outro arranjo para o registro fotográfico de espectros, ou um espectrógrafo. O texto "Máscara espectrográfica para registro digital de espectros de fontes brilhantes" detalha a montagem da máscara e pode ser encontrado no "Caderno Brasileiro de Ensino de Física" que foi publicado em agosto de 2017 (2). Aqui apresentamos algumas complementações junto com a divulgação desse artigo.

Para se ter uma ideia do potencial desse arranjo, a Fig. 1 é o espectro do sol obtido com a máscara proposta usando novamente uma rede improvisada a partir de um CD. Nele é possível ver as "linhas de Fraunhofer" típicas da luz solar e de sua interação com a atmosfera terrestre. Abaixo, ve-se um diagrama da intensidade relativa das linhas (o fundo foi subraido), mostrando as principais características visíveis dos elementos presentes na atmosfera solar e terrestre.  Neste post, apresentamos os desenhos para a montagem simples dessa "máscara", utilizando materiais comuns.

Desenho e montagem da máscara

A máscara consiste em um suporte feito em cartolina em que a "rede improvisada" de CD é colocada na frente da objetiva de uma câmera (no caso, usamos uma do tipo DSLR) e que permite a tomada de espectros de fontes brilhantes em "foco infinito". Essa máscara difere do arranjo anterior porque não há fenda e os espectros são formados a partir da difração da imagem do objeto distante na superfície do CD em modo "transmissão". Para se ter bons espectros, entretanto, é preciso que a fonte de luz sob análise seja observada a partir da reflexão em certos anteparos, conforme explicado abaixo.

Materiais

Para a construção da máscara é necessário:
  • 1 CD-R de onde se extrai um fragmento conforme indicado em (1). Será necessário também retirar a proteção metálica conforme explicado naquele post;
  • Tesoura;
  • Fita adesiva;
  • Cartolina escura;
  • Estilete;
  • Câmera fotográfica (do tipo DSLR ou que permita ajuste de tempo de exposição).
A máscara é formada por duas peças. Um "anel" de fixação, que permite a rede fixar-se na frente da objetiva da câmera e um bloqueio em "cotovelo" para permitir que apenas a luz proveniente de fonte distante seja difratada e entre na objetiva da câmera ao longo de seu eixo óptico.

Desenho do anel de fixação
Fig. 2 Diagrama para a montagem do anel de fixação. Note a posição da máscara. Os círculos devem ser vazados e adaptados conforme o diâmetro da câmera utilizada.As abas de fixação lateral tem 1 cm de largura.
Fig.2  traz o diagrama para montagem do anel de fixação. Esse desenho deve ser reproduzido em uma cartolina grossa, de preferência de cor preta, recortado e colado. O diâmetro interno, de 71 mm, é o da objetiva da câmera Nikon que utilizei e pode ser modificado para para outras objetivas.  Note que o anel menor tem 24 mm de diâmetro, mas pode ser maior. Esse é o tamanho também usado para a "replica" ou pedaço de CD-R que serve com rede de difração e que deve ser colado na parte interna, voltada para a objetiva da câmera.

Fig. 3 Aspecto final do anel de fixação montado
com a rede na posição.
O aspecto final do anel pode ser visto na Fig. 3. Como essa imagem mostra, a rede ficará paralela à objetiva da câmera (ver Fig. 5). Se apenas esse anel fosse utilizado, a câmera poderia registrar espectros e, ao mesmo tempo, uma imagem. Isso está mostrado na Fig. 4 para uma lâmpada de iluminação interna (de tubo). O espectro pode ser visto juntamente com a imagem de fundo.

Portanto, precisamos de um bloqueio, que obstrua a luz que atinge diretamente a objetiva e só mostre o espectro. Isso é conseguido com outro arranjo que chamei "bloqueio em cotovelo".

Desenho do bloqueio em cotovelo.

O desenho do bloqueio necessitou da determinação do ângulo de incidência que resulte no espectro de 1a ordem ser gerado paralelo ao eixo óptico da câmera. Esse ângulo foi medido em aproximadamente 50 graus em relação ao eixo da câmera. Esse ângulo pode ser diferente, conforme o tipo de CD utilizado (quanto maior o número de linhas por mm, tanto maior será esse ângulo). A Fig. 5 traz a representação esquemática do ângulo de incidência, juntamente com uma representação da objetiva da câmera e o desenho do cotovelo.

Fig. 4 Foto de um espectro de uma lâmpada fluorescente com o anel adaptado à câmera e com a rede de CD (sem o bloqueio).
Fig. 5 Diagrama esquemático do bloqueio em cotovelo a ser construído para a máscara (esquerda, ver complementação na Fig. 6). À direita pode-se ver o ângulo de incidência dos raios de entrada, a fim de que o espectro em primeira ordem seja paralelo ao eixo óptico da câmera.
O desenho da segunda peça pode ser visto na Fig. 6. Ela pode ser construída igualmente em cartolina e, idealmente, seu interior deve ser negro para aumentar o contraste dos espectros registrados. Observe que os polígonos A e A' são espelho um do outro, de forma que as medidas fornecidas para A são as mesmas de A'. As abas de colagem tem aproximadamente 1 cm de largura.
Fig. 6 Acima: diagrama esquemático para montagem do bloqueio em cotovelo. Abaixo: representação esquemática do bloqueio colado acima do anel de fixação. O diâmetro dos círculos é de aproximadamente 25 mm. 
Fig.  7 Imagem da montagem final da máscara na câmera.

O resultado final pode ser visto na Fig. 7. O alinhamento da máscara para uma tomada de espectro não é muito simples. É possível adaptar uma pequena luneta "buscadora" para facilitar o alinhamento.

Análise de espectros 

A Fig. 8 traz uma imagem do espectro do sol não processado, tal como registrado através da máscara. Para obter esse espectro, o reflexo do sol em um anteparo distante (vidro de um automóvel) foi utilizado. Os parâmetros usados para cada registro são mostrados em cada imagem. Note que, uma vez que a rede do CD espalha muito a luz, tempos de exposição da ordem de mais de 1 s devem ser usados em registros noturnos e apenas objetos brilhantes podem ser resolvidos.
Fig. 8 Espectro do Sol não processado obtido com a máscara. Nele é possível ver as famosas "linhas de Fraunhofer".
(Nikon D5100 F5.6, 1/3 s, ISO 100).
 A Fig. 9, traz um registro do espectro da lua e a Fig. 10 de lâmpadas de iluminação pública.
Fig. 9 Espectro da lua obtido com a máscara mostrando as linhas de Fraunhofer. (Nikon 5100, F4.5, 10s, ISO 320)
Fig. 10 Espectros de lâmpadas de iluminação pública obtidos com a máscara. Uma linha do espectro de segunda ordem aparece também registrado na imagem superior (lâmpada de vapor de mercúrio).Nikon 5100, F4.5,  10s, ISO 2500
Normalização e calibração do espectro da Fig. 8.

Uma vez que a câmera introduz distorções na representação de cor em relação ao espectro observado pelo olho, calibramos o espectro e extraímos a função de envoltória do espectro modificado. Para tanto, a imagem em JPG foi lida com um software de análise numérica e as três matrizes R, G e B foram extraídas separadamente. A função que retorna o comprimento de onda como função da posição do pixel (que chamamos de função calib) é  linear (porque a resposta de um a rede de difração é linear) e na forma:

calib(k)=L2+(k-D2)*(L1-L2)/(D1-D2)

Para a Fig. 8 temos

L1 = 589.7 nm
L2 = 486.1 nm

D1 = 1257
D2 = 470

e os valores de k vao de 0 a 4879. Com isso, dado a coordenada de um pixel, podemos saber seu valor correspondente em nanometros. Obviamente, conforme o aspecto da Fig. 8, é possível ver que se trata de um espectro de baixa resolução e a imagem traz, portanto, um registro superamostrado. Esse espectro pode ser visto no gráfico da Fig. 11 onde a intensidade em tons de cinza é mostrado no eixo y.
Fig. 11 Espectro solar "raw" (bruto) calibrado em nanômetros. A queda observada pouco antes de 600 nm é uma artifício do sensor da câmera.
Para eliminar a modulação de sensibilidade do sensor da câmera, seu valor médio foi extraído (na forma de uma função de calibração e normalizado entre 0<C1<1 e C2=1. Esse espectro foi multiplicado à matriz RGB, como função do comprimento de onda e dada por uma subrotina conhecida (3), fornecendo a imagem da Fig. 1. Portanto, o espectro da Fig. 1 contém exatamente a mesma quantidade de informação da Fig. 8 e representa um registro mais fiel ao olho, sem as distorções introduzidas pela máscara de cor do sensor fotográfico.

Referências