18 novembro 2013

Fotometria do cometa Ison (Novembro de 2013)

Fig. 1 Imagem de 14 de Novembro com a presença do cometa Ison. Problema: com base nesta imagem, qual a magnitude do cometa? Imagem obtida em Barão Geraldo, Campinas, SP.
Finalmente, o dia 14 de Novembro permitiu o primeiro registro fotográfico do cometa Ison, como visto desde Campinas, SP (figura 1). A imagem mostra uma pequena mancha esverdeada em meio às estrelas da constelação da Virgem. Esse registro fotográfico, por mais simples que pareça, contém em si informação suficiente para determinar a magnitude (ou brilho) do cometa. 

Vamos mostrar aqui um método prático (fazendo jus ao nome do blog) de se estimar essa magnitude. A imagem da Figura 1 já identifica diversas estrelas na vizinhança do cometa. A magnitude dessas estrelas é conhecida. Como podemos fazer para estimar a do Ison? O método aqui descrito é semelhante à estimativas feitas pelo olho, quando se compara o brilho a ser inferido com duas estrelas de magnitude maior e menor que o do astro, obtendo-se um resultado por interpolação.

Sem muitos detalhes, passamos a descrever o método, que é baseado na extração de informação de brilho contida na imagem. Antes de tudo, convém listar as magnitudes (como dada pelo Stellarium) para as estrelas listadas na Fig. 1, em ordem decrescente de brilho:

m(X Vir) = 4.65
m( ψ Vir) = 4.75
m(g Vir) = 5.55
m(HIP 62743) = 6.45
m(HIP 63225) = 6.9
m(HIP 63240a)=7.25

Observe que colhemos uma amostra de estrelas com ampla gama de variação e sabemos que o cometa tem brilho no intervalo 4.65-7.25 claramente por inspeção visual da Fig. 1.

Extração da amostra de brilho de sensibilização da imagem.

Antigamente, a medida de brilho em placas contendo uma imagem era feita por meio de análise de microscópio. Cada estrela na imagem da Fig.1 era observada sob um microscópio e o analista media a área da "mancha" sensibilizada no filme. Como temos uma imagem digital, podemos fazer isso diretamente sobre a matriz da intensidades. Para tanto, convertemos a imagem da Fig.1 (que é colorida) em um padrão preto e branco (onde os tons de cinza vão de 0 (preto) a 255 (branco), ou formato 8-bits).

Extraímos um pedaço da imagem por meio de um algoritmo de análise. No nosso caso, usamos o software MathCad que permite a manipulação de imagens inteiras ou pedaços dela. Por exemplo, a Fig. 2 traz os mapas em tons de cinza do cometa na foto da Fig.1, de ψ Vir e de X Vir para um quadro com 20 X 20 pixels. Note que a imagem não aparece circular mas ovalada, por causa da exposição de 8 segundos e o uso de tripé sem acompanhamento.
Fig. 2 Matrizes de intensidade de amostras da imagem da Fig.1 convertida em preto e branco, centrado em cada elemento indicado e cobrindo uma área de 20 X 20 pixels. A estrutura 'ovalada' se deve ao movimento do objeto durante a exposição de 8 segundos.
Há uma outra maneira de representar o 'mapa' de intensidade da fig. 2. Através de um gráfico 2d de curvas de intensidade ou superfícies 3d de alturas. Nesse último caso, cada pixel representa um paralelepípedo com altura igual ao tom de cinza do pixel. Essa representação pode ser vista na fig. 3 à direita, junto com o mapa de contorno de intensidades em 2d para o cometa Ison (ou seja, a representação de tons de pixel do primeiro frame da Fig. 2).
Fig. 3 Esquerda: curvas de nível de intensidade para o cometa Ison (mapa 2d). Direita: representação 3d onde cada tom do pixel corresponde a uma altura. O brilho é dado, por exemplo, pela soma das alturas de todos os 'blocos' que tenham altura acima de um limiar escolhido.
O brilho fotográfico do objeto pode ser tomado como sendo igual a soma de todas as 'alturas' no mapa de intensidade que estão acima de certo limiar. No nosso caso, escolhemos esse limiar de forma que a função de brilho seja proporcional (ou inversamente proporcional) à magnitude das estrelas escolhidas.

O cálculo do brilho pode ser feito por meio da seguinte função, que chamamos de meas(image,limiar) (escrita em código MathCad, aqui image é a matriz de intensidade de entrada):


 Chamamos de B o brilho extraído a partir da contagem dos pixels submetidos à filtragem do limiar (ou seja, o valor resultado de meas(image, limiar)). Para a fig. 1, o resultado com limiar = 107 foi:

B(X Vir) = 5379
B( ψ Vir) = 5379
B(g Vir) = 3480
B(HIP 62743) = 1312
B(HIP 63225) = 915
B(HIP 63240a)=107

A curva de calibração da imagem e, finalmente, a magnitude do Ison

O próximo passo consistem em plotar em um gráfico os valores de B versus a magnitude (fornecida anteriormente). Cada ponto azul da Fig. 4 é uma estrela na lista usada para calibração. Assim, no eixo x podemos ler a magnitude visual usada e na ordenada o brilho (conforme calculado acima para a função de brilho). 

Fig. 4 Reta de interpolação dos dados (função de brilho versus magnitude). Com base na curva que melhor interpola os dados, a magnitude do Ison pode ser calculada a partir de seu brilho estimado da imagem.
A reta tem a equação B(mag) = a + b*mag, onde:

a = 15100
b = -2082

Esses valores são extraídos a partir de uma interpolação linear feita sobre os pontos do gráfico da Fig. 4. Pela aplicação do superfície de intensidade do cometa (fig. 3) usando o mesmo limiar obtemos:

B(Ison)= 3233

Portanto, a magnitude do cometa será dada por:

mag(Ison)=[B(Ison)-a] / b

Substituindo os valores na equação obtemos:

mag(Ison) = 5.7.

Essa é a magnitude estimada com base na imagem obtida da Fig. 1.

Premissas e observações 

Alguns comentários são importantes sobre o que aqui descrevemos:
  • Usamos valores de magnitude visual, enquanto que a CCD da câmera fornece brilho proporcional à magnitude fotográfica;
  • Há diferenças, portanto, entre as magnitudes e as correspondentes funções de brilho por causa das cores dos objetos fotografados (para o olho humano um objeto com certa cor pode ser mais brilhante do que para a CCD);
  • Se mais de uma imagem fosse novamente analisada, é provável que o brilho estimado não seria exatamente igual ao obtido. Isso ocorre por causa de erros no registro, flutuações de intensidade incontroláveis no CCD;
  • O processo de conversão para preto e branco altera as intensidades de entrada;
  • Podemos usar outras funções para estimativa do brilho, mas a relação entre a magnitude e o brilho pode não ser linear como mostrado na Fig. 4;
  • Se usarmos outro valor de Limiar, p. ex, 106, a magnitude obtida é igual a 5,68 (ao invés de 5,70). O método é sensível ao valor de intensidade usado, mas a variação está no intervalo +/-0.03;
  • O correto seria tomar várias imagens e aplicar, de forma automática, o método para cada uma delas. Tomar a média e estimar o erro. 

Nosso objetivo aqui foi apenas mostrar como é feito - de forma grosseira - as estimativas de magnitude sem dependência com o olho humano. Esse método pode ser aplicado para outros objetos, por exemplo, estrelas variáveis, com vantagens porque é uma estimativa totalmente numérica e não depende de julgamento psicológico do observador.

Nossa estimativa para a magnitude do cometa Ison em 14/11/13 as 07:15 UT foi, portanto, 5,7+/-0,03.

Referências






13 novembro 2013

Cometas em 2013: em tempos de ISON quem brilha mesmo é LOVEJOY

Com a aproximação do periélio do Cometa C/2012 S1 (ISON) cresceu o interesse pela busca de cometas. Estão anunciados quatro cometas para Novembro de 2013: o esperado ISON, o cometa C/2013 R1 (Lovejoy), o cometa Encke e uma 'variedade' do LINEAR.

Fig. 1 Mapa da posição do cometa C/2013 R1 em 11/11/2013.

Fig. 2 Aspecto do cometa c/2013 R1 como visto por um binóculo. A data é 11/11/2013 as 05:00 do tempo local (07:00 TU).
Acordamos no dia 11 de Novembro  último para tentar observar pelo menos os dois mais brilhantes desses. Na primeira tentativa usando um binóculo 15X70, não foi difícil divisar o C/2013 R1 próximo à cabeça do Leão, como indicado pelo mapa da Fig. 1. Ele estava bem próximo da estrela  κ Leo como mostrado por esse mapa. 

A Fig. 2 traz uma imagem do cometa Lovejoy feita com uma lente de 300 mm de distância foca a 8 segundos de exposição apenas para registrar a ocorrência. A estrela assinalada com o '87' é a HIP 45897, que tem magnitude 8,7 para comparação. Era visível a presença de uma coma bem pronunciada, embora nenhuma cauda fosse perceptível.

Em vão procuramos pelo ISON, embora tivéssemos feito um mapa semelhante para buscá-lo na constelação de Virgem bem próximo a um par de estrelas Zeniah (η Vir) e 13 Vir. O problema? Estando muito baixo do horizonte, sua posição o coloca muito próximo do brilho da aurora. Junte a isso a poluição da cidade de Campinas e não temos uma quadro favorável a sua observação. Como ele ainda não desenvolveu o brilho necessário na data, a observação com binóculo não foi possível. Isso soa como uma decepção, afinal o tal cometa foi anunciado com muita antecedência, mas não pode ser visto facilmente na data. 

No meu entendimento, a campanha de anuncio do C/2012 S1 foi um total fiasco. À medida que seu brilho aumenta (conforme uma curva de luz teórica) ele se aproxima cada vez mais do sol e do brilho da aurora, estreitando bastante sua janela de observação que deverá ficar para o final do mês de Novembro.

Um belo registro dos dois cometas pode ser visto, porém, na Fig. 3 feito em 9 de Novembro de 2013. Parabéns aos observadores Paulo Régis, Luidhy Santana, João Melo, Hilbermon Almeida e Evandro Silva pelo registro feito em Paramoti, CE.

Fig.3 Registro do cometa ISON e o Lovejoy feito em Paramoti, Ceará. Créditos: Paulo Régis, Luidhy Santana, João Melo, Hilbernon Almeida e Evandro Silva. Refletor Schmidt-Newtoniano, 250mm, f/4, CCD Atik. 100 segundos cada imagem. 9 de Novembro de 2013.   
Saiba mais

Para observar o cometa C/2013 R1 ou Lovejoy, use este mapa aqui.



25 outubro 2013

Eclipse do Sol: 3 de Novembro de 2013 (eclipse híbrido)

Fig. 1 Imagem do eclipse do Sol em 22 de Setembro de 2006. O eclipse de 3 de Novembro terá este aspecto como visto nas regiões nortes e nordeste do Brasil. (Foto: A. Xavier, Canon PowerShot A300, ISO 100, 1/200 segundos com filtro.)
Conforme anunciado aqui anteriormente,  o eclipse parcial da Lua deverá ser seguido por um eclipse total do Sol que, em sua totalidade, não será visível no Brasil. Porém, em uma extensa faixa de dimensões continentais sobre Brasil (Fig. 3), o eclipse poderá ser visto como um eclipse parcial. Isso significa que a Lua irá cobrir apenas parcialmente o Sol, em média 20% da superfície do disco solar. Na regiões mais setentrionais do Brasil, o obscurecimento chegará a 40%.

Há uma característica interessante desse que será o último eclipse de 2013: é que ele se trata de um eclipse híbrido. Segundo a ref. 1:
Esse será um dos raros eclipses híbridos anular/total nos quais algumas seções da trajetória são anulares, enquanto que outras são totais. Tal dualidade ocorre quando o vértex da sombra da Lua toca algumas partes da Terra, mas fica distante dela em outras. Essa geometria peculiar se deve à curvatura da Terra que faz com que certas localidades caiam dentro da sombra, enquanto que outras fiquem mais distantes, dentro da 'ante-sombra'. Em muitos casos, a trajetória central começa anular e muda para total no meio do caminho, ficando anular de novo no final da trajetória. O eclipse do dia 3 de Novembro é ainda mais único porque a trajetória central da sombra começa anular e acaba total. Porque eclipses híbridos ocorrem próximos do vértex da sombra da Lua, a trajetória de totalidade é muito estreita. 
Para entender isso, ver a Fig. 2.

Fig. 2 Condição de ocorrência de um eclipse total 'híbrido'. A trajetória de totalidade ocorre de A para B. Em A o eclipse é anular porque o ângulo aparente da Lua é menor do que do Sol. Em B, a Lua está 'mais próxima' e, seu diâmetro aparente é suficiente para cobrir o Sol, causando um eclipse total. Esta condição será satisfeita no eclipse de 3 de Novembro. 
Quanto à trajetória do eclipse, a Fig. 3a produzida por F. Espenak da NASA traz a distribuição geográfica da projeção sobre o globo terrestre da penumbra e sombra. A Fig. 3b é uma complementação em animação da Fig. 3a e mostra a evolução do fenômeno.

Fig. 3a Distribuição geográfica da projeção da sombra do eclipse de 3 de Novembro. A linha central é a trajetória de totalidade que passará em terra apenas no continente africano. O ponto máximo é o centro do mapa que se encontra sobre o oceano Atlântico.  O eclipse tem início antes das 10:00 do Tempo Universal (horário de Greenwich), atinge o máximo as 12:46 do Tempo Universal. O eclipse será assim visível na manhã do dia 3 de Novembro. Os horários para o Brasil (eclipse parcial e percentual de parcialidade) estão indicados no mapa.
Fig. 3b Gif Animado representando a evolução da penumbra sobre a Terra. O horário está em 'Tempo Universal'.
Como NÃO observar o eclipse

Se você está em uma região do Brasil onde ele será observável (região norte e nordeste como indicado pela Fig. 3), é importante saber de antemão o que não se deve fazer errado na observar o eclipse. A maior parte das pessoas não tem consciência da quantidade copiosa de radiação que é emitida pelo Sol e como ela pode danificar a retina dos olhos causando lesões irreversíveis. Assim, alguns mandamentos são:
  • JAMAIS olhe para o Sol sem nenhum tipo de proteção;
  • JAMAIS utilize qualquer tipo de instrumento de observação (binóculo, telescópio etc) sem proteção apropriada. Em geral essa 'proteção apropriada' envolve a aquisição de filtros ópticos que não podem ser substituídos por opções de 'baixo custo';
  • JAMAIS utilize negativos de filmes fotográficos para observar o sol (tipo negativo de 'raio-X', de fotos antigas etc). Isso porque, embora o negativo possa barrar a parte visível que o Sol emite, ele não pode bloquear o que é invisível e que é, igualmente, prejudicial a sua visão;
Fig. 4 Método da projeção. Eclipse híbrido de 29 de Março de 1987. Este eclipse foi visível como parcial no Brasil. Foto A. Xavier. O telescópio é um refletor Newtoniano DFV de 12 cm de diâmetro.
Como observar

O melhor método de todos é o da projeção. Ela pode ser feita por meio de uma 'câmera escura' onde um orifício de dimensões diminutas projeta a imagem do Sol para uma região de sombra (por exemplo, um pequeno buraco feito em uma janela).

Fig. 5 Uma 'câmera escura' para observar o eclipse.
O comprimento L é variável. Para um diâmetro de disco
 igual a 1 cm, L será 115 cm  (Ref. 2). O orifício supe-
rior pode ser feito por meio de um alfinete.
Observar o Sol dentro de casa por meio de buracos na parede tem o inconveniente de exigir que o Sol esteja baixo em relação ao horizonte (além do problema de fazer o furo). Mas, isso não é necessário. Como o Sol tem um diâmetro aparente de 0,5 grau, para produzir um disquinho de 1 cm de diâmetro, você terá que ter um espaço de 115 cm de comprimento para a projeção (ou 1 cm / (0,5/57,3) se a opção for uma câmera escura como na Fig. 5. Por outro lado, ele tem a vantagem de permitir que várias pessoas contemplem o fenômeno.

Outra opção, se um telescópio de pequena abertura (< 12 cm de diâmetro) estiver disponível, é usar também a projeção conforme mostra a Fig. 4, ou seja, projetar a imagem do Sol através da ocular. Ressaltamos 'pequena abertura' porque telescópios maiores não podem projetar o Sol diretamente sem nenhum tipo de filtro ou diafragma. Um espelho de grande abertura de um telescópio refletor apontado para o Sol está mais próximo de um forno solar do que de um telescópio, podendo cozinhar qualquer coisa colocado em seu foco (inclusive a ocular).

Se você não tiver um meio seguro de observar o Sol, não observe. É certamente preferível perder o fenômeno (que poderá ser visto em outras ocasiões) do que perder sua visão...

Referências